Introduction to Computational Linguistics

Regular Languages and Finite State Transducers

Jan-Philipp Séhn
jp.soehn@uni-tuebingen.de

January 16th, 2008

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 1/29

I ——
Finite State Technology

Regular languages and finite state automata

@ deterministic finite state automata,

characterize the same class of languages, viz. Type 3 languages

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 2 /29

I ——
Finite State Technology

Regular languages and finite state automata

@ deterministic finite state automata,

@ nondeterministic finite state automata,

characterize the same class of languages, viz. Type 3 languages

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 2 /29

I ——
Finite State Technology

Regular languages and finite state automata

@ deterministic finite state automata,
@ nondeterministic finite state automata,

o finite state automata, and

characterize the same class of languages, viz. Type 3 languages

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 2 /29

I ——
Finite State Technology

Regular languages and finite state automata

@ deterministic finite state automata,
@ nondeterministic finite state automata,
o finite state automata, and

@ regular expressions

characterize the same class of languages, viz. Type 3 languages

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 2 /29

I
The Bigger Picture

Definition

Regular Languages:

A language L is said to be regular or recognizable if the set of strings s
such that s € L is accepted by a DFA.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 3/29

I
The Bigger Picture

Definition
Regular Languages:

A language L is said to be regular or recognizable if the set of strings s
such that s € L is accepted by a DFA.

Theorem
Kleene, 1956:
The family of regular languages over * is equal to the smallest family of

languages over ¥* that contains the empty set, the singleton sets, and
that is closed under Kleene star, concatenation, and union.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 3/29

I
The Bigger Picture

Definition
Regular Languages:

A language L is said to be regular or recognizable if the set of strings s
such that s € L is accepted by a DFA.

Theorem
Kleene, 1956:
The family of regular languages over * is equal to the smallest family of

languages over ¥* that contains the empty set, the singleton sets, and
that is closed under Kleene star, concatenation, and union.

= The family of regular languages over ¥* is equal to the family of
languages denoted by the set of regular expressions.

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 3/29

Regular Expressions

Given an alphabet ¥ of symbols the following are all and only the regular
expressions over the alphabet ¥ U {@,0, |, *,[,]}:

) empty set

0 the empty string (e,]

o foralloc € X

[a | B] union (for v, 3 reg.ex.) (eU B, a+B)
[« 5] concatenation (for «, 3 reg.ex.)

[a*] Kleene star (for a reg.ex.)

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 4 /29

I
Regular Expressions: Syntactic Extensions

$A contains
$A =ger [7* A 7%
for example: $[a | b] denotes all strings
that contain at least one a or b somewhere.
A & B Intersection

A - B Relative complement (minus)

~ A Complement (negation)

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 5/29

I ——
More Properties of FSAs

Given the FSAs A, Az, and Az and the string w, the following properties

are decidable:

Membership:
Emptiness:
Totality:
Subset:
Equality:

Sshn (WS 2007/08)

Introduction to Computational Linguistics

January 16th, 2008

3

6 /29

More about Decidability and Closure...

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 7 /29

I
Regular Relations

@ Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Introduction to Computational Linguistics January 16th, 2008 8 /29

I
Regular Relations

@ Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

@ Unary symbols (a, b, etc) denote strings.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 /29

I
Regular Relations

@ Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

@ Unary symbols (a, b, etc) denote strings.
@ Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 /29

Regular Relations

@ Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.
@ Unary symbols (a, b, etc) denote strings.
@ Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

@ The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 /29

I
Regular Relations

@ Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

@ Unary symbols (a, b, etc) denote strings.
@ Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

@ The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

@ Similarly, the regular expression “a:b" denotes the singleton relation

{{a;b)}.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 /29

I
Regular Relations

@ Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.
@ Unary symbols (a, b, etc) denote strings.
@ Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

@ The simplest kind of regular expression contains a single symbol.

E.g., “a” denotes the set {a}.

@ Similarly, the regular expression “a:b” denotes the singleton relation
{(a,b)}.

@ A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 /29

Constructing Regular Relations

@ Crossproduct: A .x. B

@ The crossproduct operator, .x., is used only with expressions that
denote a regular language; it constructs a relation between them.

@ [A x. B] designates the relation that maps every string of A to every
string of B. If A contains x and B contains y, the pair (x,y) is included
in the crossproduct.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 9 /29

I ——
Constructing Regular Relations

@ Composition: A .0. B

@ Composition is an operation on relations that yields a new relation.
[A 0. B] maps strings that are in the upper language of A to strings
that are in the lower language of B.

o If A contains the pair (x,y) and B contains the pair (y, z), the pair
(x,z) is in the composite relation.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 10 / 29

e
Finite-State Transducer

Definition
A finite-state transducer is a 6-tuple (X1,X2, Q,i, F, E) where

2 ;7 is a finite alphabet,
(called the input alphabet)

2 - is a finite alphabet,
(called the output alphabet)

Q is a finite set of states,
i € Q is the initial state,
F C Q the set of final states, and

ECRQx(T1"xX")xQ
is the set of edges.

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 11 /29

I ——
Properties of Transducers

@ A transducer is functional iff for any input there is at most one output.

@ A transducer is sequential iff no state has more than one arc with the
same symbol on the input side.

3

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 12 /29

I ——
Replacement Operators

@ Unconditional obligatory replacement:

A — B =ger [[No_A [A x. B]J* [No_A]

@ Unconditional optional replacement:
A (=) B =ger [[No_A [A x. A | A x. B]]* [No_A]]

@ Contextual obligatory replacement:

A—=BJ|L_R

meaning: “Replace A by B in the context L _ R.

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 13 /29

Example from Karttunen...

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 14 /29

I
Non-determinism of replace (1)

Example:

meaning:

Sample input:

Outputs:

ab — ba | x

“replace ab by ba or x

non-deterministically”
abcdbaba
bacdbbaa

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008

15 / 29

I
Non-determinism of replace (2)

Example: [ab|b|ba|aba] —x

meaning: ‘“replace ab or b or ba or aba by x"

[«5)
(o
[«5)

Sample input: aba aba aba

Outputs: X a axa a x X

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 16 / 29

I
Longest match, left-to-right replace

@ For many applications, it is useful to define another version of
replacement that in all such cases yields a unique outcome.

@ The longest-match, left-to-right replace operator, @—, defined in
Karttunen (1996), imposes a unique factorization on every input.

@ The replacement sites are selected from left to right, not allowing any
overlaps.

@ If there are alternate candidate strings starting at the same location,
only the longest one is replaced.

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 17 /29

I ——
A Grammar for Date Expressions

1To9 = [1]2]|3|4]|5|6|7[8]|9]

0To9 = [%0]1To9]

e =[]

Day = [Monday | ... | Saturday | Sunday]
Month = [January | ... | November | December |
Date = [1To9 | [1]2] 0To9 | 3 [%0 | 1]]

Year = 1To9 (0To9 (0To9 (0T09)))

DateExp = Day | (Day SP) Month Date (SP Year)

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 18 / 29

I
Marking Date Expressions

@ A parser for date expressions can be compiled from the following
simple regular expression:
DateExp @— %] ... %]

@ The above expression can be compiled into a finite-state transducer.

@ O@— is a replacement operator which scans the input from left to right
and follows a longest-match.

(]

Due to the longest match constraint, the transducer brackets only the
maximal date expressions.

©

The dots mean: identity with the upper string. The whole expression
means: replace DateExp by DateExp surrounded by brackets.

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 19 /29

Overgeneration Problem

@ The grammar for date expressions accepts illegal dates.
@ Example: It admits dates like “February 30, 2007".

@ More generally:
o If a grammar admits strings that should not be accepted by the

grammar, the grammar is said to overgenerate.
@ If a grammar does not admit strings that should be accepted by the

grammar, the grammar is said to undergenerate.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 20 /29

Tokenizing Date Expressions

Example:

Today is [Wednesday, August 28, 1996] because yesterday was [Tuesday]
and it was [August 27] so tomorrow must be [Thursday, August 29] and
not [August 30, 1996] as it says on the program.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 21 /29

Incremental Tokenization

input layer one, two, and so on.
single word layer one ||, || two ||, || and || so || on || . ||
multi-word layer one ||, || two || , || and so on || . ||

Séhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 22 /29

Advantages of Incremental Tokenization

@ With finite-state transducers incremental tokenization is implemented
by the composition operator for transducers.

@ Separation of grammar specification and program code: Each analysis
level is specified in a well-defined language of regular expressions.

@ Transducers for each layer can be stated independently of each other.

@ Regular expressions can be compiled automatically into (composed)
finite state transducers.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 23 /29

A Quick Guide to Morphology (1)

@ Morphology studies the internal structure of words.

@ The building blocks are called morphemes. One distinguishes between
free and bound morphemes.

@ Free morphemes are those which can stand alone as words.

@ Bound morphemes are those that always have to attach to other
morphemes.

3

January 16th, 2008 24 /29

Sséhn (WS 2007,/08) Introduction to Computational Linguistics

I
A Quick Guide to Morphology (2)

Linguists commonly distinguish three types of morphological processes:

@ Inflectional morphology: refers to the class of bound morphemes that
do not change word class.

@ Derivational morphology: refers to the class of bound morphemes that
do change word class.

@ Compounding: a morphologically complex word can be constructed
out of two or more free morphemes.

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 25 /29

I ——
Inflectional Morphemes

@ Bound morphemes which do not change part of speech,
e.g. big and bigger are both adjectives.

@ Typically indicate syntactic or semantic relations between different
words in a sentence, e.g. the English present tense morpheme -s in
waits shows agreement with the subject of the verb.

@ Typically occur with all members of some large class of morphemes,
e.g. the pural morpheme -s occurs with most nouns.

@ Typically occur at the margins of words as affixes (prefix, suffix,
circumfix)

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 26 / 29

I ——
Derivational Morphemes

@ Bound morphemes which change part of speech, e.g. -ment forms
nouns, such as judgment, from verbs such as judge.

@ Typically indicate semantic relations within the word, e.g. the
morpheme -ful in painful has no particular connection with any other
morpheme beyond the word painful.

@ Typically occur with only some members of a class of morphemes,
e.g. the suffix -hood occurs with just a few nouns such as brother,
neighbor, and knight, but not with many others, e.g. friend, daughter,
candle, etc.

@ Typically occur before inflectional suffixes, e.g. in interpretierbare
(Antwort) the derivational suffix bar before the inflectional suffix -e.

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 27 / 29

I ——
Compounding

@ A compound is a word formed by the combination of two independent
words.

@ The parts of the compound can be free morphemes, derived words, or
other compounds in nearly any combination:

@ girlfriend (two independent morphemes),
o looking glass (derived word + free morpheme),
@ life insurance salesman (compound + free morpheme).

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 28 /29

FYI: Change in Syllabus

Jan. 23 | Morphological Analysis [Trost 2003]
Jan. 30 | Part of Speech Tagging [Leech 1997]
Feb. 6 | Final exam

Feb. 13 | Part of Speech Tagging contd.
Resources in Computational Linguistics

3

Sséhn (WS 2007,/08) Introduction to Computational Linguistics January 16th, 2008 29 /29

