Introduction to Computational Linguistics Regular Languages and Finite State Transducers

Jan-Philipp Söhn

jp.soehn@uni-tuebingen.de

January 16th, 2008

Finite State Technology

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

Finite State Technology

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

Finite State Technology

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

The Bigger Picture

Definition

Regular Languages:

A language *L* is said to be *regular or recognizable* if the set of strings *s* such that $s \in L$ is accepted by a DFA.

The Bigger Picture

Definition

Regular Languages:

A language *L* is said to be *regular or recognizable* if the set of strings *s* such that $s \in L$ is accepted by a DFA.

Theorem

Kleene, 1956:

The family of regular languages over Σ^* is equal to the smallest family of languages over Σ^* that contains the empty set, the singleton sets, and that is closed under Kleene star, concatenation, and union.

The Bigger Picture

Definition

Regular Languages:

A language *L* is said to be *regular or recognizable* if the set of strings *s* such that $s \in L$ is accepted by a DFA.

Theorem

Kleene, 1956:

The family of regular languages over Σ^* is equal to the smallest family of languages over Σ^* that contains the empty set, the singleton sets, and that is closed under Kleene star, concatenation, and union.

 \Rightarrow The family of regular languages over Σ^* is equal to the family of languages denoted by the set of regular expressions.

Given an alphabet Σ of symbols the following are all and only the regular expressions over the alphabet $\Sigma \cup \{ \emptyset, 0, |, *, [,] \}$:

Ø empty set

- 0 the empty string $(\epsilon, [])$
- $\sigma \qquad \quad \text{for all } \sigma \in \Sigma$
- $[\alpha \mid \beta] \quad \text{union (for } \alpha, \beta \text{ reg.ex.}) \qquad \qquad (\alpha \cup \beta, \alpha + \beta)$
- $[\alpha \ \beta]$ concatenation (for α, β reg.ex.)
- $[\alpha^*]$ Kleene star (for α reg.ex.)

Regular Expressions: Syntactic Extensions

- \$A contains $A =_{def} [?* A ?*]$ for example: [a | b] denotes all strings that contain at least one *a* or *b* somewhere.
- A & B Intersection
- A B Relative complement (minus)
- \sim A Complement (negation)

Given the FSAs A, A_1 , and A_2 and the string w, the following properties are decidable:

 $w \stackrel{?}{\in} L(A)$ Membership: $L(A) \stackrel{?}{=} \emptyset$ Emptiness: $L(A) \stackrel{?}{=} \Sigma^*$ Totality: Subset: Equality:

 $L(A_1) \stackrel{?}{\subseteq} L(A_2)$ $L(A_1) \stackrel{?}{=} L(A_2)$

More about Decidability and Closure...

• Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.

- Unary symbols (a, b, etc) denote strings.
- Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- \bullet Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a,b\rangle\}.$
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

 Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.

- Unary symbols (a, b, etc) denote strings.
- Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- \bullet Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a,b\rangle\}.$
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

- Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.
 - Unary symbols (a, b, etc) denote strings.
 - Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a,b\rangle\}.$
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

- Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.
 - Unary symbols (a, b, etc) denote strings.
 - Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a,b\rangle\}.$
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

- Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.
 - Unary symbols (a, b, etc) denote strings.
 - Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- \bullet Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a,b\rangle\}.$
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

- Regular expressions can contain two kinds of symbols: unary symbols and symbol pairs.
 - Unary symbols (a, b, etc) denote strings.
 - Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.
- The simplest kind of regular expression contains a single symbol. E.g., "a" denotes the set {a}.
- Similarly, the regular expression "a:b" denotes the singleton relation $\{\langle a,b\rangle\}.$
- A regular relation can be viewed as a mapping between two regular languages. The a:b relation is simply the crossproduct of the languages denoted by the expressions a and b.

Constructing Regular Relations

- Crossproduct: A .x. B
 - The crossproduct operator, .x., is used only with expressions that denote a regular language; it constructs a relation between them.
 - [A .x. B] designates the relation that maps every string of A to every string of B. If A contains x and B contains y, the pair $\langle x, y \rangle$ is included in the crossproduct.

Constructing Regular Relations

- Composition: A .o. B
 - Composition is an operation on relations that yields a new relation. [A .o. B] maps strings that are in the upper language of A to strings that are in the lower language of B.
 - If A contains the pair $\langle x, y \rangle$ and B contains the pair $\langle y, z \rangle$, the pair $\langle x, z \rangle$ is in the composite relation.

Finite-State Transducer

Definition

A finite-state transducer is a 6-tuple $(\Sigma_1, \Sigma_2, Q, i, F, E)$ where

 Σ_1 is a finite alphabet, (called the *input alphabet*) Σ_2 is a finite alphabet, (called the *output alphabet*) Q is a finite set of *states*. $i \in Q$ is the *initial state*. $F \subseteq Q$ the set of *final states*. and $E \subseteq Q \times (\Sigma_1^* \times \Sigma_2^*) \times Q$ is the set of edges.

Properties of Transducers

- A transducer is functional iff for any input there is at most one output.
- A transducer is sequential iff no state has more than one arc with the same symbol on the input side.

Replacement Operators

- Unconditional obligatory replacement:
 - $\mathsf{A} \to \mathsf{B} =_{\mathit{def}} [\ [\ \mathsf{No_A} \ [\mathsf{A} \ .x. \ \mathsf{B}]]^* \ [\mathsf{No_A}]$
- Unconditional optional replacement:

A (\rightarrow) B =_{def} [[No_A [A .x. A | A .x. B]]* [No_A]]

• Contextual obligatory replacement:

 $\mathsf{A} \to \mathsf{B} \parallel \mathsf{L} _ \mathsf{R}$

meaning: "Replace A by B in the context L $_$ R."

Example from Karttunen...

Non-determinism of *replace* (1)

Example:	$ab \to ba \mid x$
meaning:	"replace <i>ab</i> by <i>ba</i> or <i>x</i> non-deterministically"
Sample input:	<u>a b</u> c d b <u>a b</u> a
Outputs:	<u>ba</u> cdb <u>ba</u> a
	<u>b a</u> c d b <u>x</u> a
	<u>x</u> c d b <u>b a</u> a
	$\underline{x} c d b \underline{x} a$

Non-determinism of *replace* (2)

Example: [a	b b b a	a b a] –	$\rightarrow x$	
meaning: "re	place <i>ab</i> o	r b or ba	or <i>aba</i> by	x''
Sample input:	<u>a b</u> a	a <u>b</u> a	a <u>b a</u>	<u>a b a</u>
Outputs:	ха	аха	ах	х

Longest match, left-to-right replace

- For many applications, it is useful to define another version of replacement that in all such cases yields a unique outcome.
- The longest-match, left-to-right replace operator, @→, defined in Karttunen (1996), imposes a unique factorization on every input.
- The replacement sites are selected from left to right, not allowing any overlaps.
- If there are alternate candidate strings starting at the same location, only the longest one is replaced.

A Grammar for Date Expressions

- $1\mathsf{To}9 \qquad = \quad \left[\begin{array}{ccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{array} \right]$
- 0 To 9 = [% 0 | 1 To 9]
- SP = [","]
- $\mathsf{Day} \qquad = \quad [\; \mathsf{Monday} \; | \; ... \; | \; \mathsf{Saturday} \; | \; \mathsf{Sunday} \;]$
- $\mathsf{Month} \quad = \quad [\ \mathsf{January} \mid ... \mid \mathsf{November} \mid \mathsf{December}]$
- ${\sf Date} \qquad = \quad [\ {\sf 1To9} \ | \ [{\sf 1} \ | \ 2] \ {\sf 0To9} \ | \ {\sf 3} \ [\%0 \ | \ 1]]$
- Year = 1To9 (0To9 (0To9 (0To9)))
- $\mathsf{DateExp} \quad = \quad \mathsf{Day} \mid (\mathsf{Day} \; \mathsf{SP}) \; \mathsf{Month} \; \; \mathsf{Date} \; (\mathsf{SP} \; \mathsf{Year})$

Marking Date Expressions

- A parser for date expressions can be compiled from the following simple regular expression: DateExp @→ %[... %]
- The above expression can be compiled into a finite-state transducer.
- @→ is a replacement operator which scans the input from left to right and follows a longest-match.
- Due to the longest match constraint, the transducer brackets only the maximal date expressions.
- The dots mean: identity with the upper string. The whole expression means: replace DateExp by DateExp surrounded by brackets.

Overgeneration Problem

- The grammar for date expressions accepts illegal dates.
- Example: It admits dates like "February 30, 2007".
- More generally:
 - If a grammar admits strings that should not be accepted by the grammar, the grammar is said to *overgenerate*.
 - If a grammar does not admit strings that should be accepted by the grammar, the grammar is said to *undergenerate*.

Example:

Today is [Wednesday, August 28, 1996] because yesterday was [Tuesday] and it was [August 27] so tomorrow must be [Thursday, August 29] and not [August 30, 1996] as it says on the program.

input layer one, two, and so on.

single word layer one || , || two || , || and || so || on || . ||

multi-word layer one || , || two || , || and so on || . ||

Advantages of Incremental Tokenization

- With finite-state transducers incremental tokenization is implemented by the composition operator for transducers.
- Separation of grammar specification and program code: Each analysis level is specified in a well-defined language of regular expressions.
- Transducers for each layer can be stated independently of each other.
- Regular expressions can be compiled automatically into (composed) finite state transducers.

A Quick Guide to Morphology (1)

- Morphology studies the internal structure of words.
- The building blocks are called morphemes. One distinguishes between free and bound morphemes.
 - Free morphemes are those which can stand alone as words.
 - Bound morphemes are those that always have to attach to other morphemes.

Linguists commonly distinguish three types of morphological processes:

- Inflectional morphology: refers to the class of bound morphemes that do not change word class.
- Derivational morphology: refers to the class of bound morphemes that do change word class.
- Compounding: a morphologically complex word can be constructed out of two or more free morphemes.

Inflectional Morphemes

- Bound morphemes which do not change part of speech, e.g. *big* and *bigger* are both adjectives.
- Typically indicate syntactic or semantic relations between different words in a sentence, e.g. the English present tense morpheme -s in *waits* shows agreement with the subject of the verb.
- Typically occur with all members of some large class of morphemes, e.g. the pural morpheme -*s* occurs with most nouns.
- Typically occur at the margins of words as affixes (prefix, suffix, circumfix)

Derivational Morphemes

- Bound morphemes which change part of speech, e.g. *-ment* forms nouns, such as *judgment*, from verbs such as *judge*.
- Typically indicate semantic relations within the word, e.g. the morpheme *-ful* in *painful* has no particular connection with any other morpheme beyond the word *painful*.
- Typically occur with only some members of a class of morphemes, e.g. the suffix *-hood* occurs with just a few nouns such as *brother*, *neighbor*, and *knight*, but not with many others, e.g. *friend*, *daughter*, *candle*, etc.
- Typically occur before inflectional suffixes, e.g. in *interpretierbare* (*Antwort*) the derivational suffix *bar* before the inflectional suffix *-e*.

Compounding

- A compound is a word formed by the combination of two independent words.
- The parts of the compound can be free morphemes, derived words, or other compounds in nearly any combination:
 - girlfriend (two independent morphemes),
 - *looking glass* (derived word + free morpheme),
 - *life insurance salesman* (compound + free morpheme).

FYI: Change in Syllabus

Jan. 23	Morphological Analysis	[Trost 2003]
Jan. 30	Part of Speech Tagging	[Leech 1997]
Feb. 6	Final exam	
Feb. 13	Part of Speech Tagging contd.	
	Resources in Computational Linguistics	

