
Introduction to Computational Linguistics
Regular Languages and Finite State Transducers

Jan-Philipp Söhn

jp.soehn@uni-tuebingen.de

January 16th, 2008

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 1 / 29

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 2 / 29

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 2 / 29

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 2 / 29

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 2 / 29

The Bigger Picture

Definition

Regular Languages:

A language L is said to be regular or recognizable if the set of strings s
such that s ∈ L is accepted by a DFA.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 3 / 29

The Bigger Picture

Definition

Regular Languages:

A language L is said to be regular or recognizable if the set of strings s
such that s ∈ L is accepted by a DFA.

Theorem

Kleene, 1956:

The family of regular languages over Σ∗ is equal to the smallest family of
languages over Σ∗ that contains the empty set, the singleton sets, and
that is closed under Kleene star, concatenation, and union.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 3 / 29

The Bigger Picture

Definition

Regular Languages:

A language L is said to be regular or recognizable if the set of strings s
such that s ∈ L is accepted by a DFA.

Theorem

Kleene, 1956:

The family of regular languages over Σ∗ is equal to the smallest family of
languages over Σ∗ that contains the empty set, the singleton sets, and
that is closed under Kleene star, concatenation, and union.

⇒ The family of regular languages over Σ∗ is equal to the family of
languages denoted by the set of regular expressions.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 3 / 29

Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular
expressions over the alphabet Σ ∪ {Ø, 0, |, ∗, [,]}:

Ø empty set

0 the empty string (ǫ, [])

σ for all σ ∈ Σ

[α | β] union (for α, β reg.ex.) (α ∪ β, α + β)

[α β] concatenation (for α, β reg.ex.)

[α*] Kleene star (for α reg.ex.)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 4 / 29

Regular Expressions: Syntactic Extensions

$A contains
$A =def [?* A ?*]
for example: $[a | b] denotes all strings
that contain at least one a or b somewhere.

A & B Intersection

A - B Relative complement (minus)

∼ A Complement (negation)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 5 / 29

More Properties of FSAs

Given the FSAs A, A1 , and A2 and the string w , the following properties
are decidable:

Membership: w
?
∈ L(A)

Emptiness: L(A)
?
= ∅

Totality: L(A)
?
= Σ∗

Subset: L(A1)
?
⊆ L(A2)

Equality: L(A1)
?
= L(A2)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 6 / 29

More about Decidability and Closure...

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 7 / 29

Regular Relations

Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the singleton relation
{〈a, b〉}.

A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 / 29

Regular Relations

Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the singleton relation
{〈a, b〉}.

A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 / 29

Regular Relations

Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the singleton relation
{〈a, b〉}.

A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 / 29

Regular Relations

Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the singleton relation
{〈a, b〉}.

A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 / 29

Regular Relations

Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the singleton relation
{〈a, b〉}.

A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 / 29

Regular Relations

Regular expressions can contain two kinds of symbols: unary symbols
and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of strings.

The simplest kind of regular expression contains a single symbol.
E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the singleton relation
{〈a, b〉}.

A regular relation can be viewed as a mapping between two regular
languages. The a:b relation is simply the crossproduct of the
languages denoted by the expressions a and b.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 8 / 29

Constructing Regular Relations

Crossproduct: A .x. B

The crossproduct operator, .x., is used only with expressions that
denote a regular language; it constructs a relation between them.

[A .x. B] designates the relation that maps every string of A to every
string of B. If A contains x and B contains y , the pair 〈x , y〉 is included
in the crossproduct.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 9 / 29

Constructing Regular Relations

Composition: A .o. B

Composition is an operation on relations that yields a new relation.
[A .o. B] maps strings that are in the upper language of A to strings
that are in the lower language of B.
If A contains the pair 〈x , y〉 and B contains the pair 〈y , z〉, the pair
〈x , z〉 is in the composite relation.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 10 / 29

Finite-State Transducer

Definition

A finite-state transducer is a 6-tuple (Σ1 , Σ2 , Q, i , F , E) where

Σ1 is a finite alphabet,
(called the input alphabet)

Σ2 is a finite alphabet,
(called the output alphabet)

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

E ⊆ Q × (Σ1
∗ × Σ2

∗) × Q
is the set of edges.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 11 / 29

Properties of Transducers

A transducer is functional iff for any input there is at most one output.

A transducer is sequential iff no state has more than one arc with the
same symbol on the input side.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 12 / 29

Replacement Operators

Unconditional obligatory replacement:

A → B =def [[No A [A .x. B]]∗ [No A]

Unconditional optional replacement:

A (→) B =def [[No A [A .x. A | A .x. B]]∗ [No A]]

Contextual obligatory replacement:

A → B ‖ L R

meaning: “Replace A by B in the context L R.”

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 13 / 29

Example from Karttunen...

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 14 / 29

Non-determinism of replace (1)

Example: ab → ba | x

meaning: “replace ab by ba or x

non-deterministically”

Sample input: a b c d b a b a

Outputs: b a c d b b a a

b a c d b x a

x c d b b a a

x c d b x a

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 15 / 29

Non-determinism of replace (2)

Example: [a b | b | b a | a b a] → x

meaning: “replace ab or b or ba or aba by x”

Sample input: a b a a b a a b a a b a

Outputs: x a a x a a x x

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 16 / 29

Longest match, left-to-right replace

For many applications, it is useful to define another version of
replacement that in all such cases yields a unique outcome.

The longest-match, left-to-right replace operator, @→, defined in
Karttunen (1996), imposes a unique factorization on every input.

The replacement sites are selected from left to right, not allowing any
overlaps.

If there are alternate candidate strings starting at the same location,
only the longest one is replaced.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 17 / 29

A Grammar for Date Expressions

1To9 = [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]

0To9 = [%0 | 1To9]

SP = [”, ”]

Day = [Monday | ... | Saturday | Sunday]

Month = [January | ... | November | December]

Date = [1To9 | [1 | 2] 0To9 | 3 [%0 | 1]]

Year = 1To9 (0To9 (0To9 (0To9)))

DateExp = Day | (Day SP) Month Date (SP Year)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 18 / 29

Marking Date Expressions

A parser for date expressions can be compiled from the following
simple regular expression:
DateExp @→ %[... %]

The above expression can be compiled into a finite-state transducer.

@→ is a replacement operator which scans the input from left to right
and follows a longest-match.

Due to the longest match constraint, the transducer brackets only the
maximal date expressions.

The dots mean: identity with the upper string. The whole expression
means: replace DateExp by DateExp surrounded by brackets.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 19 / 29

Overgeneration Problem

The grammar for date expressions accepts illegal dates.

Example: It admits dates like “February 30, 2007”.

More generally:

If a grammar admits strings that should not be accepted by the
grammar, the grammar is said to overgenerate.
If a grammar does not admit strings that should be accepted by the
grammar, the grammar is said to undergenerate.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 20 / 29

Tokenizing Date Expressions

Example:

Today is [Wednesday, August 28, 1996] because yesterday was [Tuesday]
and it was [August 27] so tomorrow must be [Thursday, August 29] and
not [August 30, 1996] as it says on the program.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 21 / 29

Incremental Tokenization

input layer one, two, and so on.

single word layer one || , || two || , || and || so || on || . ||

multi-word layer one || , || two || , || and so on || . ||

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 22 / 29

Advantages of Incremental Tokenization

With finite-state transducers incremental tokenization is implemented
by the composition operator for transducers.

Separation of grammar specification and program code: Each analysis
level is specified in a well-defined language of regular expressions.

Transducers for each layer can be stated independently of each other.

Regular expressions can be compiled automatically into (composed)
finite state transducers.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 23 / 29

A Quick Guide to Morphology (1)

Morphology studies the internal structure of words.

The building blocks are called morphemes. One distinguishes between
free and bound morphemes.

Free morphemes are those which can stand alone as words.
Bound morphemes are those that always have to attach to other
morphemes.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 24 / 29

A Quick Guide to Morphology (2)

Linguists commonly distinguish three types of morphological processes:

Inflectional morphology: refers to the class of bound morphemes that
do not change word class.

Derivational morphology: refers to the class of bound morphemes that
do change word class.

Compounding: a morphologically complex word can be constructed
out of two or more free morphemes.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 25 / 29

Inflectional Morphemes

Bound morphemes which do not change part of speech,
e.g. big and bigger are both adjectives.

Typically indicate syntactic or semantic relations between different
words in a sentence, e.g. the English present tense morpheme -s in
waits shows agreement with the subject of the verb.

Typically occur with all members of some large class of morphemes,
e.g. the pural morpheme -s occurs with most nouns.

Typically occur at the margins of words as affixes (prefix, suffix,
circumfix)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 26 / 29

Derivational Morphemes

Bound morphemes which change part of speech, e.g. -ment forms
nouns, such as judgment, from verbs such as judge.

Typically indicate semantic relations within the word, e.g. the
morpheme -ful in painful has no particular connection with any other
morpheme beyond the word painful.

Typically occur with only some members of a class of morphemes,
e.g. the suffix -hood occurs with just a few nouns such as brother,
neighbor, and knight, but not with many others, e.g. friend, daughter,
candle, etc.

Typically occur before inflectional suffixes, e.g. in interpretierbare
(Antwort) the derivational suffix bar before the inflectional suffix -e.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 27 / 29

Compounding

A compound is a word formed by the combination of two independent
words.

The parts of the compound can be free morphemes, derived words, or
other compounds in nearly any combination:

girlfriend (two independent morphemes),
looking glass (derived word + free morpheme),
life insurance salesman (compound + free morpheme).

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 28 / 29

FYI: Change in Syllabus

Jan. 23 Morphological Analysis [Trost 2003]

Jan. 30 Part of Speech Tagging [Leech 1997]

Feb. 6 Final exam

Feb. 13 Part of Speech Tagging contd.
Resources in Computational Linguistics

Söhn (WS 2007/08) Introduction to Computational Linguistics January 16th, 2008 29 / 29

