
Introduction to Computational Linguistics
Finite State Automata and Regular Expressions

Jan-Philipp Söhn

jp.soehn@uni-tuebingen.de

January 9th, 2008

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 1 / 21

Incremental Linguistic Analysis

tokenization

morphological analysis (lemmatization)

part-of-speech tagging

named-entity recognition

partial chunk parsing

full syntactic parsing

semantic and discourse processing

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 2 / 21

Form of Grammars of Type 0–3

For i ∈ {0, 1, 2, 3}, a grammar 〈N, T , P, S〉 of Type i , with N the set of
non-terminal symbols, T the set of terminal symbols (N and T disjoint,
Σ = N ∪ T), P the set of productions, and S the start symbol (S ∈ N),
obeys the following restrictions:

T3: Every production in P is of the form A → aB or A → ǫ, with
B, A ∈ N, a ∈ T .

T2: Every production in P is of the form A → x , with A ∈ N and x ∈ Σ∗.

T1: Every production in P is of the form x1Ax2 → x1yx2 , with
x1 , x2 ∈ Σ∗, y ∈ Σ+, A ∈ N and the possible exception of C → ǫ in
case C does not occur on the righthand side of a rule in P.

T0: No restrictions.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 3 / 21

An Example of a Type 2 Grammar

Let 〈N, T , P, S〉 be a grammar with N, T and P as given below:

N = {S , NP, VP, N, V }

T = {Gravity, sucks}

P = {S → NP VP, NP → N, VP → V , N → Gravity, V → sucks}

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 4 / 21

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 5 / 21

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 5 / 21

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 5 / 21

Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 5 / 21

Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular
expressions over the alphabet Σ ∪ {Ø, 0, |, ∗, [,]}:

Ø empty set

0 the empty string (ǫ, [])

σ for all σ ∈ Σ

[α | β] union (for α, β reg.ex.) (α ∪ β, α + β)

[α β] concatenation (for α, β reg.ex.)

[α*] Kleene star (for α reg.ex.)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 6 / 21

Regular Expressions

Kleene star is a unary operation, either on sets of strings or on sets of
symbols or characters.

1 If V is a set of strings then V* is defined as the smallest superset of V
that contains 0 (the empty string) and is closed under the string
concatenation operation. This set can also be described as the set of
strings that can be made by concatenating zero or more strings from
V.

2 If V is a set of symbols or characters then V* is the set of all strings
over symbols in V, including the empty string.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 7 / 21

Meaning of Regular Expressions

L(Ø) = ∅ the empty language

L(0) = {0} the empty-string language

L(σ) = {σ}

L([α | β]) = L(α) ∪ L(β)

L([α β]) = L(α) ◦ L(β)

L([α∗]) = (L(α))*

Σ∗ is called the universal language. Note that the universal language is
given relative to a particular alphabet.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 8 / 21

Remarks on Regular Expressions

Ø∗ =def {0}

The empty string, i.e., the string containing no character, is denoted
by 0. The empty string is the neutral element for the concatenation
operation. That is:

for any string w ∈ Σ∗ : w0 = 0w = w

Square brackets, [], are used for grouping expressions. Thus [A] is
equivalent to A while (A) is not.
We leave out brackets for readability if no confusion can arise.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 9 / 21

Regular Expressions: Syntax

() is (sometimes) used for optionality; e.g. (A) ; definable in terms of
union with the empty string.

? denotes any symbol; L(?) = Σ
(our ? corresponds to # elsewhere)

A+ denotes iteration; one or more concatenations of A. Equivalent to
A (A*).

Note the following simple expressions:

[] denotes the empty-string language

?* denotes the universal language (= Σ*)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 10 / 21

Deterministic Finite-State Automata

Definition (DFA)

A deterministic FSA (DFA) is a quintuple (Σ, Q, i , F , δ) where

Σ is a finite set called the alphabet,

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

δ is the transition function from Q × Σ to Q.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 11 / 21

Generalizing Finite-State Automata

Definition (rNFA)

A restricted nondeterministic finite-state automaton is a quintuple
(Σ, Q, i , F , ∆) where

Σ is a finite set called the alphabet,

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

∆ ⊆ Q × (Σ ∪ {ǫ}) × Q is the set of edges
(the transition relation).

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 12 / 21

Nondeterministic Finite-State Automata

Definition (NFA)

A nondeterministic finite-state automaton is a quintuple (Σ, Q, S , F , ∆)
where

Σ is a finite set called the alphabet,

Q is a finite set of states,

S ⊆ Q is the set of initial states,

F ⊆ Q the set of final states, and

∆ ⊆ Q × Σ∗ × Q is the set of edges
(the transition relation).

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 13 / 21

Some Important Properties of FSAs (1)

Determinization: For every nondeterministic finite-state automaton
there exists an equivalent deterministic automaton.

Minimization: For every nondeterministic finite-state automaton there
exists an equivalent deterministic automaton with a minimal number
of states.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 14 / 21

What is in a State

Definition (State)

DFA M = (Σ, Q, i , F , δ),

a state of M is a triple (x , q, y)

where q ∈ Q and x , y ∈ Σ∗

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 15 / 21

The directly derives relation

Definition (The directly derives relation)

Given a DFA (Σ, Q, i , F , δ),

a state (x , q, y) directly derives state (x ′, q′, y ′):

(x , q, y) ⊢ (x ′, q′, y ′) iff

1 there is σ ∈ Σ such that y = σy’ and x’= xσ (i.e. the reading head
moves right one symbol σ)

2 δ(q, σ) = q′

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 16 / 21

The derives relation

Definition (The derives relation)

Given a DFA (Σ, Q, i , F , δ),

a state A derives state B:

(x , q, y) ⊢ ∗ (x ′, q′, y ′) iff

there is a sequence S0 ⊢ S1 ⊢ · · · ⊢ Sk

such that A = S0 and B = Sk

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 17 / 21

Acceptance

Definition (Acceptance)

Given a DFA M = (Σ, Q, i , F , δ) and a string x ∈ Σ∗,

M accepts x iff

there is a q ∈ F such that (0, i , x) ⊢ ∗(x , q, 0).

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 18 / 21

Language accepted by M

Definition (Language accepted by M)

Given a DFA M = (Σ, Q, i , F , δ), the language L(M) accepted by M is the
set of all strings accepted by M.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 19 / 21

Example of a Regular Expression

a+b+c

We illustrate RegExes, FSAs, Transducers etc. with JFLAP
(http://www.jflap.org/)

Alternatively, on the SfS system there are the FSA Utilities
(http://www.let.rug.nl/∼vannoord/Fsa/)

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 20 / 21

Example of String Acceptance

Let M = ({a, b}, {q0 , q1 , q2}, q0 , {q1}, {((q0 , a), q1), ((q0 , b), q1),
((q1 , a), q2), ((q1 , b), q2), ((q2 , a), q2), ((q2 , b), q2)}).

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 21 / 21

Example of String Acceptance

Let M = ({a, b}, {q0 , q1 , q2}, q0 , {q1}, {((q0 , a), q1), ((q0 , b), q1),
((q1 , a), q2), ((q1 , b), q2), ((q2 , a), q2), ((q2 , b), q2)}).

M accepts a and b and nothing else, i.e. L(M) = {a, b}, since

(0, q0 , a) ⊢ (a, q1 , 0) and
(0, q0 , b) ⊢ (b, q1 , 0)

are the only derivations from a start state to a final state
for M.

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 21 / 21

