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Incremental Linguistic Analysis

tokenization

morphological analysis (lemmatization)

part-of-speech tagging

named-entity recognition

partial chunk parsing

full syntactic parsing

semantic and discourse processing
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Form of Grammars of Type 0–3

For i ∈ {0, 1, 2, 3}, a grammar 〈N, T , P, S〉 of Type i , with N the set of
non-terminal symbols, T the set of terminal symbols (N and T disjoint,
Σ = N ∪ T ), P the set of productions, and S the start symbol (S ∈ N),
obeys the following restrictions:

T3: Every production in P is of the form A → aB or A → ǫ, with
B, A ∈ N, a ∈ T .

T2: Every production in P is of the form A → x , with A ∈ N and x ∈ Σ∗.

T1: Every production in P is of the form x1Ax2 → x1yx2 , with
x1 , x2 ∈ Σ∗, y ∈ Σ+, A ∈ N and the possible exception of C → ǫ in
case C does not occur on the righthand side of a rule in P.

T0: No restrictions.
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An Example of a Type 2 Grammar

Let 〈N, T , P, S〉 be a grammar with N, T and P as given below:

N = {S , NP, VP, N, V }

T = {Gravity, sucks}

P = {S → NP VP, NP → N, VP → V , N → Gravity, V → sucks}
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Finite State Technology

Regular languages and finite state automata

deterministic finite state automata,

nondeterministic finite state automata,

finite state automata, and

regular expressions

characterize the same class of languages, viz. Type 3 languages
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Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular
expressions over the alphabet Σ ∪ {Ø, 0, |, ∗, [, ]}:

Ø empty set

0 the empty string (ǫ, [])

σ for all σ ∈ Σ

[α | β] union (for α, β reg.ex.) (α ∪ β, α + β)

[α β] concatenation (for α, β reg.ex.)

[α*] Kleene star (for α reg.ex.)
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Regular Expressions

Kleene star is a unary operation, either on sets of strings or on sets of
symbols or characters.

1 If V is a set of strings then V* is defined as the smallest superset of V
that contains 0 (the empty string) and is closed under the string
concatenation operation. This set can also be described as the set of
strings that can be made by concatenating zero or more strings from
V.

2 If V is a set of symbols or characters then V* is the set of all strings
over symbols in V, including the empty string.
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Meaning of Regular Expressions

L(Ø) = ∅ the empty language

L(0) = {0} the empty-string language

L(σ) = {σ}

L([α | β]) = L(α) ∪ L(β)

L([α β]) = L(α) ◦ L(β)

L([α∗]) = (L(α))*

Σ∗ is called the universal language. Note that the universal language is
given relative to a particular alphabet.
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Remarks on Regular Expressions

Ø∗ =def {0}

The empty string, i.e., the string containing no character, is denoted
by 0. The empty string is the neutral element for the concatenation
operation. That is:

for any string w ∈ Σ∗ : w0 = 0w = w

Square brackets, [], are used for grouping expressions. Thus [A] is
equivalent to A while (A) is not.
We leave out brackets for readability if no confusion can arise.
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Regular Expressions: Syntax

( ) is (sometimes) used for optionality; e.g. (A) ; definable in terms of
union with the empty string.

? denotes any symbol; L(?) = Σ
(our ? corresponds to # elsewhere)

A+ denotes iteration; one or more concatenations of A. Equivalent to
A (A*).

Note the following simple expressions:

[ ] denotes the empty-string language

?* denotes the universal language (= Σ*)
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Deterministic Finite-State Automata

Definition (DFA)

A deterministic FSA (DFA) is a quintuple (Σ, Q, i , F , δ) where

Σ is a finite set called the alphabet,

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

δ is the transition function from Q × Σ to Q.
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Generalizing Finite-State Automata

Definition (rNFA)

A restricted nondeterministic finite-state automaton is a quintuple
(Σ, Q, i , F , ∆) where

Σ is a finite set called the alphabet,

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

∆ ⊆ Q × (Σ ∪ {ǫ}) × Q is the set of edges
(the transition relation).
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Nondeterministic Finite-State Automata

Definition (NFA)

A nondeterministic finite-state automaton is a quintuple (Σ, Q, S , F , ∆)
where

Σ is a finite set called the alphabet,

Q is a finite set of states,

S ⊆ Q is the set of initial states,

F ⊆ Q the set of final states, and

∆ ⊆ Q × Σ∗ × Q is the set of edges
(the transition relation).

Söhn (WS 2007/08) Introduction to Computational Linguistics January 9th, 2008 13 / 21



Some Important Properties of FSAs (1)

Determinization: For every nondeterministic finite-state automaton
there exists an equivalent deterministic automaton.

Minimization: For every nondeterministic finite-state automaton there
exists an equivalent deterministic automaton with a minimal number
of states.
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What is in a State

Definition (State)

DFA M = (Σ, Q, i , F , δ),

a state of M is a triple (x , q, y)

where q ∈ Q and x , y ∈ Σ∗
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The directly derives relation

Definition (The directly derives relation)

Given a DFA (Σ, Q, i , F , δ),

a state (x , q, y) directly derives state (x ′, q′, y ′):

(x , q, y) ⊢ (x ′, q′, y ′) iff

1 there is σ ∈ Σ such that y = σy’ and x’= xσ (i.e. the reading head
moves right one symbol σ)

2 δ(q, σ) = q′
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The derives relation

Definition (The derives relation)

Given a DFA (Σ, Q, i , F , δ),

a state A derives state B:

(x , q, y) ⊢ ∗ (x ′, q′, y ′) iff

there is a sequence S0 ⊢ S1 ⊢ · · · ⊢ Sk

such that A = S0 and B = Sk
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Acceptance

Definition (Acceptance)

Given a DFA M = (Σ, Q, i , F , δ) and a string x ∈ Σ∗,

M accepts x iff

there is a q ∈ F such that (0, i , x) ⊢ ∗(x , q, 0).
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Language accepted by M

Definition (Language accepted by M)

Given a DFA M = (Σ, Q, i , F , δ), the language L(M) accepted by M is the
set of all strings accepted by M.
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Example of a Regular Expression

a+b+c

We illustrate RegExes, FSAs, Transducers etc. with JFLAP
(http://www.jflap.org/)

Alternatively, on the SfS system there are the FSA Utilities
(http://www.let.rug.nl/∼vannoord/Fsa/)
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Example of String Acceptance

Let M = ({a, b}, {q0 , q1 , q2}, q0 , {q1}, {((q0 , a), q1 ), ((q0 , b), q1 ),
((q1 , a), q2 ), ((q1 , b), q2 ), ((q2 , a), q2 ), ((q2 , b), q2 )}).
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Example of String Acceptance

Let M = ({a, b}, {q0 , q1 , q2}, q0 , {q1}, {((q0 , a), q1 ), ((q0 , b), q1 ),
((q1 , a), q2 ), ((q1 , b), q2 ), ((q2 , a), q2 ), ((q2 , b), q2 )}).

M accepts a and b and nothing else, i.e. L(M) = {a, b}, since

(0, q0 , a) ⊢ (a, q1 , 0) and
(0, q0 , b) ⊢ (b, q1 , 0)

are the only derivations from a start state to a final state
for M.
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